
How To: Ladder Logic via MATLAB

SD Team 519

I. Introduction
A. What is a PLC?

A Programmable Logic Controller (PLC) is an industrial computer that
is designed for automation processes, minimizing manual labor and
increasing efficiency. These digital devices are used to monitor inputs, make
programmed decisions through software applications, then control outputs.
PLCs are rugged, making them widely used in large facilities, because they
can withstand extremely harsh conditions. Additionally, they speed up
processes by constantly scanning inputs, processing logic, and generating
outputs within milliseconds.

B. Why are PLCs important?

Programmable Logic Controllers (PLCs) play a vital role in industrial
automation, yet the FAMU-FSU College of Engineering does not cover their
applications. With the rise of automation and smart manufacturing, there is
a growing demand for engineers with exposure to PLCs. They are widely used
in transportation, robotics, and manufacturing. Integrating PLCs into the
curriculum will equip students with Ladder Logic programming skills, thus
enhancing their technical abilities and broadening their interest in industrial
automation. This curriculum design ensures students will obtain hands-on
experiences while simulating real world applications and preparing them for
technological advancements, overall making them more competitive in the
job market.

C. Purpose

The Introduction to Mechatronics course at FAMU-FSU College of
Engineering plans to incorporate PLCs by adding three labs for students to
complete by the end of the semester. The labs will cover I/O control, sensor-
actuator integration, and Ladder Logic programming – the most common
language. This tutorial will allow students to incorporate this new concept of
Ladder Logic into MATLAB, simulating manufacturing processes digitally and
fully grasping the logic behind making PLCs operate successfully.

II. Nomenclature, Symbols, and Terms

Input
Receives signals from devices such as

sensors and switches; placed on the left
side of rungs

Output
Controls devices such as actuators,

motors, lights, and solenoids; placed on
the right side of rungs

Output Energize (OTE)
Output is on when the rung conditions are
true and off when rung conditions are false

Output Latch (OTL)
Latches an output, turning it on when the
rung conditions are true and keeps it on if

the rung becomes false

Output Unlatch (OTU)
Unlatches an output, turning it off when

the rung conditions are true

Rung
Each line on the ladder logic that holds a

minimum of one output

Examine If Closed (XIC)
A Boolean variable where true conditions

hold a value of 1 and false conditions hold
a value of 0

Examine If Open (XIO)
A Boolean variable where true conditions

hold a value of 0 and false conditions hold
a value of 1

Normally Closed (NC) Allows the current only when the input
condition is false

Example: When the input is off, the contact
closes. When the input is on, the contact
opens, breaking the circuit.

Normally Open (NO) Allows the current only when the input
condition is true

Example: When the input is on, the contact
closes. When the input is off, the contact
remains open.

Table 1: Definitions

Figure 1: Input and Output Symbols

Figure 2: Types of Inputs

Figure 3: Types of Relays

Figure 4: Types of Outputs

III. Launching the Ladder Logic Simulator via MATLAB Simulink
1. How to open the simulation

a. Open MATLAB
b. Download the library: Simulink PLC Coder
c. Make sure to download the edit_simulink_plc and run_simulink_plc

files from Github (This will be provided for students!)
▪ edit_simulink_plc: This function is useful for editing the Ladder

Logic diagram
▪ run_simulink_plc: This function is useful for running the simulation

to extract data
d. Run the Demo file with this line of code: edit_simulink_plc(“Demo”);

▪ Notice that the Demo file will not open until a file is generated
e. The Demo and library window will pop up

▪ The library window is named “Library.studio5000_plclib”
▪ There will be many icons in the library which signify the preset

symbols used to create ladder logic diagrams
2. Creating the PLC simulation

a. An icon you will be using in every ladder logic diagram is the “PLC
Controller Suite”. This simulates the actual PLC device.

Figure 5: PLC Controller Suite Icon

▪ Other icons you will be using are the inputs (i.e., XIC, XIO) and the
outputs (i.e., OTE, OTL, OTU)

Figure 6: Input and Output Icons

b. Start your ladder logic diagram! Click and drag the “PLC Controller
Suite” into the Demo Simulink file
▪ It may take a second to load

c. Double click on the “PLC Controller Suite”. You should view this
“Logic” window

d. Double click on the blue square labeled “Task”
e. Double click on the orange square labeled “Program”

▪ This will open the ladder logic workspace for the PLC we have just
created!

Figure 7: Ladder Logic Workspace

3. Adding custom inputs to the PLC
a. Click and drag a desired input (XIC, XIO) from the library (Studio5000)

window onto the left side of the rung (called Rung 1)
b. Double click on the input symbol. A popup window will ask to name the

“Operand Tag”. This is the variable name for the symbol you are using
▪ Example: “Button1”

4. Adding custom outputs to the PLC
a. Click and drag a desired output (OTE, OTL, OTU) and drag to the right

side of the same rung
b. Double click on the output symbol and name the variable

▪ Example: “LED1”

5. Adding rungs
a. Method 1: Click the “Add Rungs” box located to the left and type the

desired number
b. Method 2: Click the “Add 1 Rung” box located on the left

6. Adding multiple inputs and outputs
a. Add a second rung. It will be called “Rung 2”
b. Add another input onto the second rung underneath the first one and

name it
▪ Example: “Button2”

c. To create an OR statement, where both XIC inputs are in parallel, click
on the rung after the new input on the bottom and delete it

d. Click on “Junction” in the library, drag it over to Rung 1 where the
original input and output are. Make sure to place the junction after
input 1 and before output 1
▪ The junction will merge 2 inputs and connect to 1 output

Figure 8: Junction Symbol

e. Click the outgoing arrow from “Button1” input and drag it to the left side
of the junction

f. Click on the outgoing arrow from “Button2” and drag it to the left side of
the junction. This will create a parallel circuit with two inputs, which is
an OR statement
▪ Assuming the inputs are XIC, if Button1 OR Button2 is “1”, then

LED1 will turn on
▪ You can delete the Rung 2 black rectangle since there is no longer a

second rung

Figure 9: Completed OR Statement via Ladder Logic

g. Once your ladder logic diagram is done, double click on “Program
Variables”

h. The popup window for Program Variables will show up on the screen
▪ The Name tab signifies the variable names that have been created
▪ The Scope tab contains local and external items
▪ Local: I/O inside of the PLC
▪ External: requires a physical I/O (i.e., Button1, LED1)
▪ The Data Type tab will always be BOOL for ladder logic. If it is not,

make sure to change it
▪ The Initial Value must be changed from false to true (assuming XIC

inputs are being used)
i. Hit “Apply” then “OK” to confirm
j. Click “Up to Parent POU” arrow twice until you’re back the main screen

where the you will see “Controller Tags” and “Task”
k. Double click on the green “Controller Tags” table. This is where you can

view the external variables that have just been created in the Program
Variables window. An additional window will pop up named “Block
Parameters: Controller Tags”.

Figure 10: Controller Tags Window

▪ The Name tab will list the external variables
▪ The Mapping Type will signify what to define your variables
▪ Button would be an input and LED would be output
▪ The Data Type will always be Boolean

l. Hit “Apply” then “OK”
m. Click “Up to Parent POU” once to return to the main Demo workspace.

You will see the PLC will have the desired input and output that has just
been created

Figure 11: Simulated PLC

n. Once you are done with the Ladder Logic diagram, you can minimize
the window and full screen the Demo window

7. Running the PLC Simulation
a. Under the ‘Simulation’ tab at the top, look for the “Library Browser”

icon. This will allow for the user to control the PLC

Figure 12: Library Browser and Demo Screen

b. Under the Library Browser window that pops up on the left, type in
“Constant” in the search bar. This feeds a constant value into the input,
in this case, a button.

c. Click and drag the icon and drag it to the left side of the PLC. Connect
the arrow so that it feeds into the button.

d. Double click on the constant symbol. A popup window will show up.
Under the “Main” tab, the constant value is assigned to “1”, but change
if needed.

e. Under the “Signal Attributes” tab, make sure to change the output data
type to “Boolean” or “Inherit via Back Propagation”. Refer to the
troubleshooting section below named “PLC Simulation” for more
details to ensure no errors occur.

f. Hit “Apply” then “OK”
8. Visualizing results of the PLC Simulation

a. Go back to the Library Browser. Type in “Scope” in the search bar. Click
and drag the icon to the right side of the PLC. Connect it to the PLC.

Figure 13: Constant, PLC, and Scope in Demo Workspace

b. You can close out of the library browser tab if desired.
c. Look for the “Run” green circle button under the Simulation tab in

MATLAB. Once you hit the drop down, click “Simulation Pacing”
d. Hit the check box next to “Enable pacing to slow down simulation”. If

you don’t check this off, the simulation will run as fast as possible,
hindering any data to be collected.
▪ You can adjust the Stop Time found at the top next to the Run

button. This stop time reflects the duration of the simulation.
e. Double click on the scope icon to view the graph.
f. Hit “Run” on either the scope pop up or the demo window. You have

successfully simulated a PLC via Ladder Logic! ☺

IV. Troubleshooting/Debugging/FAQ’s
• Important notes

▪ Note that Ladder Logic is read left to right and top to bottom
▪ To exit out of the Ladder Logic diagram or return back to previous

pages, hit the bright blue “Up to Parent POU” arrow. This serves as
the “back” button.

• Adding the first Rung
▪ If there is no rung initially, click and drag an input into the

workspace. Click on the arrow at the left of the input symbol and
drag onto the desired line. Repeat on the arrow at the right to
complete the rung.

• PLC Simulation
▪ An error will pop up if the value for the input (i.e., Button) does not

match the Constant value that sends through the PLC. To avoid this,
read the steps below:

▪ After adding the “Constant” and double clicking it for the “Block
Parameters: Constant” window to pop up, go to the “Signal
Attributes” tab. There are two methods to avoid errors.
o Method 1: Change the Output Data Type to Boolean to match

the Boolean input
o Method 2: Change the Output Data Type to “Inherit via back

propagation”. This will force the constant to match the input.
▪ If there are issues in the scope window (which graphically

illustrates the PLC), make sure to adjust the inputs from false to
true depending on what type of input is utilized. Keeping it to the
default (false) will allow for it to act “OR 0”, even if the constant is
“1”.

• Debugging Tips
▪ If you want to see the Ladder Logic being ran in real time with the

simulation, go back into the Ladder Logic diagram. Run the
simulation.

▪ As the simulation is running, the parts turn green. This is helpful to
animate what is happening as it runs
o The symbol will always show as green, but pay attention to if

the rung/arrow/line after it is green. If it is, then it shows that
it is running through that portion of code!

V. Additional Resources
• Code from Github: https://github.com/jjv432/SeniorDesign/tree/Demo
• Setting up Arduino Opta PLC: https://docs.arduino.cc/software/plc-

ide/tutorials/plc-ide-setup-license/
• https://github.com/arduino/ArduinoCore-

mbed/blob/main/libraries/STM32H747_System/examples/QSPIFormat/QSPI
Format.ino

https://github.com/jjv432/SeniorDesign/tree/Demo
https://docs.arduino.cc/software/plc-ide/tutorials/plc-ide-setup-license/
https://docs.arduino.cc/software/plc-ide/tutorials/plc-ide-setup-license/
https://github.com/arduino/ArduinoCore-mbed/blob/main/libraries/STM32H747_System/examples/QSPIFormat/QSPIFormat.ino
https://github.com/arduino/ArduinoCore-mbed/blob/main/libraries/STM32H747_System/examples/QSPIFormat/QSPIFormat.ino
https://github.com/arduino/ArduinoCore-mbed/blob/main/libraries/STM32H747_System/examples/QSPIFormat/QSPIFormat.ino

